Modelling and strategies for the assessment and Optimisation of Energy Usage aspects of rail innovation

Deliverable Report

<table>
<thead>
<tr>
<th>Document identifier:</th>
<th>OPEUS – D3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Due to EC:</td>
<td>M6 – 30th April 2017</td>
</tr>
<tr>
<td>Date of Delivery to EC:</td>
<td>28/09/2018</td>
</tr>
<tr>
<td>Deliverable Title:</td>
<td>Scenarios Set Up and Description</td>
</tr>
<tr>
<td>Dissemination level:</td>
<td>PU</td>
</tr>
<tr>
<td>Work Package:</td>
<td>WP3</td>
</tr>
<tr>
<td>Lead Beneficiary:</td>
<td>UNEW</td>
</tr>
<tr>
<td>Other beneficiaries involved:</td>
<td>UIC, UITP, UROS, STAV</td>
</tr>
<tr>
<td>Document Status:</td>
<td>Final</td>
</tr>
</tbody>
</table>
The OPEUS project consortium consists of:

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Short name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Newcastle University</td>
<td>UNEW</td>
<td>UK</td>
</tr>
<tr>
<td>2</td>
<td>SAFT SAS</td>
<td>SAFT</td>
<td>FR</td>
</tr>
<tr>
<td>3</td>
<td>Union Internationale des Chemin de Fer</td>
<td>UIC</td>
<td>FR</td>
</tr>
<tr>
<td>4</td>
<td>Union Internationale des Transport Public</td>
<td>UITP</td>
<td>BE</td>
</tr>
<tr>
<td>5</td>
<td>Universitaet Rostock</td>
<td>UROS</td>
<td>DE</td>
</tr>
<tr>
<td>6</td>
<td>Stadler Rail Valencia SAU</td>
<td>STAV</td>
<td>ES</td>
</tr>
</tbody>
</table>

Document History:

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Modification Reason</th>
<th>Modified by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.07.17</td>
<td>First full draft aligned with FINE1 D3.1 energy baseline</td>
<td>Roberto Palacin (UNEW)</td>
</tr>
<tr>
<td>2</td>
<td>28.09.18</td>
<td>Update based on FINE D3.1 final submission</td>
<td>Roberto Palacin (UNEW)</td>
</tr>
</tbody>
</table>
Table of Contents:

EXECUTIVE SUMMARY ... 4

1 Introduction ... 7

2 Reference scenarios overview ... 8

3 Urban service profile ... 11
 3.1 Suburban .. 11
 3.2 Metro ... 12
 3.3 Tram .. 14

4 Regional ... 16
 4.1 Regional 160 .. 16
 4.2 Regional 140 .. 18

5 High speed ... 19
 5.1 High speed 300 .. 19
 5.2 High Speed 250 ... 20
 5.3 Intercity .. 22

6 Freight ... 23

7 Topologies, components and parameters ... 25

8 Conclusions .. 26

9 References ... 27

10 Appendix A .. 28
List of Figures

Fig. 1. Standard suburban profile (CEN/CENELEC, 2014) ..11
Fig. 2. Standard metro profile (OSIRIS, 2014; Roll2Rail, 2016)12
Fig. 3. Tram standard profile (OSIRIS, 2014; Roll2Rail, 2016)14
Fig. 4. Regional 160 service profile (CEN/CENELEC, 2014)16
Fig. 5. Regional 140 service profile (CEN/CENELEC, 2014)18
Fig. 6. High Speed 300 service profile (CEN/CENELEC, 2014)19
Fig. 7. High speed 250 service profile (Roll2Rail, 2016)21
Fig. 8. Intercity service profile (CEN/CENELEC, 2014) ..22
Fig. 9. Freight mainline service profile (CEN/CENELEC, 2014)23
Fig. 10. Appendix A_T01 Electric traction chain AC power supply (25kV@50Hz, 15kV@16.7Hz) ..29
Fig. 11. Appendix A_T02 Electric traction chain AC power supply E-transformer (25kV@50Hz, 15kV@16.7Hz) ..29
Fig. 12. Appendix A_T03 Electric traction chain DC power supply (750V, 1.5kV, 3kV) 30
Fig. 13. Appendix A_T04 bi-current traction chain ..30
Fig. 14. Appendix A_T05 Diesel electric traction ..31
Fig. 15. Appendix A_T06 Diesel hydraulic/Mechanical traction31
List of Tables

Table 1. Timetable recovery margins (UIC, 2000) ... 9
Table 2. Overview of service categories and their main characteristics (CleanER-D, 2011; CEN/CENELEC, 2014; OSIRIS, 2014; Roll2Rail, 2016) 10
Table 3. Suburban profile data (CEN/CENELEC, 2014) .. 12
Table 4. Metro profile data (OSIRIS, 2014; Roll2Rail, 2016) ... 13
Table 5. Tram profile data (OSIRIS, 2014; Roll2Rail, 2016) .. 15
Table 6. Regional 160 profile data (CEN/CENELEC, 2014; Roll2Rail, 2016) 17
Table 7. High Speed 300 profile data (CEN/CENELEC, 2014) 20
Table 8. High speed 250 profile data (Roll2Rail, 2016) .. 21
Table 9. Intercity profile data (CEN/CENELEC, 2014) .. 23
Table 10. Freight mainline profile data (CEN/CENELEC, 2014) 24
Table 11. Selection of components to be simulated as part of OPEUS 25
EXECUTIVE SUMMARY

The work presented in this deliverable D3.1 has been carried out in the framework of the collaboration agreement between OPEUS and the S2R Members project FINE1 (Grant agreement No. 730818).

The document summarises the main service profile and related data defining the boundary conditions for the reference scenarios (urban, regional, high speed and freight) to be used in the modelling activities of the project. The contents of this document have been produced by a combination of the information generated by previous projects (e.g. Roll2Rail), the existing draft standard prEN50591 and the joint effort of the OPEUS-FINE1 group.

Specifically, the following service profiles and data have been defined:

1. Urban
 a. Suburban
 b. Metro
 c. Tram
2. Regional
 a. Regional 160
 b. Regional 140
3. High speed
 a. High speed 300
 b. High speed 250
 c. Intercity
4. Freight
1 Introduction

As indicated in the DOA, this deliverable focuses on the definition of the boundary conditions for the reference scenarios to be used in the modelling activities of the project. The emphasis is on the identification and definition of suitable duty cycles for each of these scenarios. Specifically, the following are being considered:

1. Urban
2. Regional
3. High speed
4. Freight

The work presented in this deliverable D3.1 has been carried out in the framework of the collaboration agreement between OPEUS and the S2R Members project FINE1 (Grant agreement No. 730818). Section 2 provides an overview of the reference scenarios and the general characteristics of the rolling stock used in each of these. Sections 3, 4, 5 and 6 describe the scenarios for urban, regional, high speed and freight applications defined by their corresponding agreed/standardised duty cycles. Section 7 introduces the structure of the input parameter matrix and section 8 summarises the main conclusions of this deliverable.
2 Reference scenarios overview

The work carried by previous EU-funded projects such as RailEnergy and CleanER-D has resulted in standardised duty cycles which are incorporated into a standard (CEN/CENELEC, 2014). The Roll2Rail project (Grant agreement H2020-636032)\(^1\) recently published a report defining a number of service sub-categories for each main reference profile or scenario. These include maximum speed, average distance between stations and type of rolling stock used. The results of Roll2Rail (2016) indicate that approximately 80% of all European traffic measured in train-km uses electric traction.

In addition, the data resulting from this project shown in Table 2 related to the annual service specifies the distance covered by rolling stock in each of the categories as an average of current vehicle age distribution. This value could be increased if optimisation approaches were to be introduced to the rolling stock availability and maintenance regimes. For each sub-service category included in Table 2, a reference speed profile or duty cycle is defined representing the typical service provided which might include station stops and gradients. However, given the diversity of services across Europe it is simply not possible to have a universal profile. Instead, representative synthetic profiles are used. The current prEN50591 standard “Specification and verification of energy consumption for railway rolling stock” (CEN/CENELEC, 2014) includes these representative profiles which have been included in Table 2.

The standard only considers the inclusion of altitude profiles (gradients) for freight mainline services as a way to assess the capability of locomotives to overcome them. However, for the purpose of Shift2Rail related research, no gradients are considered in order to facilitate a valid comparison between energy estimations. Similarly, the standard does not consider the effects of tunnels although these increase the driving resistance of high speed traffic in particular.

Travel time included in prEN50591 has been simulated and validated as part of Roll2Rail (2016). Specifically, all out mode with maximum power was simulated to

\(^1\) New Dependable Rolling Stock for a more Sustainable, Intelligent and Comfortable Rail Travel in Europe (Roll2Rail)
obtain the minimum travel time. A time plan recovery margin was then added to define the operational travel time. This considers reserve time allowances to accommodate an energy optimise profile as well as typical operational conditions without introducing delays. Leaflet 451-1 (UIC, 2000) defines a range of time plan recovery margins for different service categories (Table 1). A minimum of 5% recovery time has been suggested for Shift2Rail research purposes.

<table>
<thead>
<tr>
<th>Maximum speed [km/h]</th>
<th>≤ 140</th>
<th>141-160</th>
<th>161-200</th>
<th>201-250</th>
<th>>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery margin as % of journey time</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Table 1. Timetable recovery margins (UIC, 2000)
<table>
<thead>
<tr>
<th>Main Service</th>
<th>Sub Service Category</th>
<th>Max. Speed [km/h]</th>
<th>Distance between stations [km]</th>
<th>Station dwell time [min]</th>
<th>Route length [km]</th>
<th>Operational travel time [h:min:sec]</th>
<th>Annual service [km]</th>
<th>Km-share [%]</th>
<th>Traction system</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Speed</td>
<td>High Speed 300</td>
<td>300</td>
<td>150</td>
<td>3</td>
<td>300</td>
<td>01:47:00 01:53:00</td>
<td>400,000</td>
<td>5</td>
<td>electrical</td>
<td>TD1.1</td>
</tr>
<tr>
<td></td>
<td>High Speed 250</td>
<td>250</td>
<td>75</td>
<td>3</td>
<td>300</td>
<td>02:03:00 -</td>
<td>350,000</td>
<td>3</td>
<td>electrical</td>
<td>250km/h and 2 add. stops</td>
</tr>
<tr>
<td></td>
<td>Intercity</td>
<td>200</td>
<td>28</td>
<td>2-3</td>
<td>250</td>
<td>02:39:00 -</td>
<td>200,000</td>
<td>3</td>
<td>Mostly electrical</td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>Regional 160</td>
<td>160</td>
<td>15</td>
<td>1-3</td>
<td>250</td>
<td>02:57:00 -</td>
<td>150,000</td>
<td>9</td>
<td>Mostly electrical</td>
<td>TD1.1</td>
</tr>
<tr>
<td></td>
<td>Regional 140</td>
<td>140</td>
<td>5</td>
<td>1-2</td>
<td>70</td>
<td>01:09:00 -</td>
<td>100,000</td>
<td>17</td>
<td>Electrical &Diesel</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>Suburban</td>
<td>120</td>
<td>3.6</td>
<td>1</td>
<td>40</td>
<td>00:43:00 -</td>
<td>100,000</td>
<td>18</td>
<td>electrical</td>
<td>TD1.1</td>
</tr>
<tr>
<td></td>
<td>Metro</td>
<td>80</td>
<td>1</td>
<td>0.5</td>
<td>20</td>
<td>00:37:30 -</td>
<td>140,000</td>
<td>13</td>
<td>electrical</td>
<td>OSIRIS</td>
</tr>
<tr>
<td></td>
<td>Tram</td>
<td>50</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>90,000</td>
<td>13</td>
<td>electrical</td>
<td>TD1.1</td>
</tr>
<tr>
<td>Freight</td>
<td>Freight Mainline</td>
<td>120</td>
<td>50</td>
<td>1-5</td>
<td>300</td>
<td>04:17:15 -</td>
<td>100,000</td>
<td>15</td>
<td>Mostly electrical</td>
<td>TD5.5</td>
</tr>
<tr>
<td></td>
<td>Freight Shunting</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>37</td>
<td>04:32:00 -</td>
<td>30,000</td>
<td>4</td>
<td>Diesel</td>
<td>CleanER-D</td>
</tr>
</tbody>
</table>

Table 2. Overview of service categories and their main characteristics (CleanER-D, 2011; CEN/CENELEC, 2014; OSIRIS, 2014; Roll2Rail, 2016)
3 Urban service profile

The suburban service profile consists of three distinct sub-categories, namely: Suburban, metro and tram. Their characteristics are detailed in the following sub-sections.

3.1 Suburban

A typical suburban service profile is defined in prEN50591 (Fig. 1). This type of service usually involves traffic on high capacity electrified routes connecting suburbs with large city centres at speeds varying from 80 to 120 km/h and distance between stops of 3.6km on average.

![Fig. 1. Standard suburban profile (CEN/CENELEC, 2014)](image)

The data related to this profile is summarised in Table 3
Table 3. Suburban profile data (CEN/CENELEC, 2014)

<table>
<thead>
<tr>
<th>station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>arrival [hh:mm:ss]</th>
<th>stop</th>
<th>departure [hh:mm:ss]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>40</td>
<td>1:00</td>
<td>0:00:00:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>100</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>100</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>100</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>110</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>110</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>120</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>21</td>
<td>120</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>26</td>
<td>120</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>29</td>
<td>120</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>31</td>
<td>90</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>38</td>
<td>80</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.5</td>
<td>40</td>
<td>00:43:00</td>
<td>1:00</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>40</td>
<td>00:43:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Metro

The Metro profile is not included in the current version of the prEN50591 standard but it was proposed as part of OSIRIS (2014) and updated during Roll2Rail (2016). It represents fast services within large urban areas covering routes with stops separated by an average of 1 km at speeds ranging from 60 to 80 km/h.

![Fig. 2. Standard metro profile (OSIRIS, 2014; Roll2Rail, 2016)](image-url)
The data related to this profile is summarised in Table 4.

<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>80</td>
<td>00:00:00</td>
</tr>
<tr>
<td>B</td>
<td>0.9</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>C</td>
<td>1.6</td>
<td>60</td>
<td>00:00:30</td>
</tr>
<tr>
<td>D</td>
<td>2.1</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>E</td>
<td>2.7</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>F</td>
<td>3.4</td>
<td>60</td>
<td>00:00:30</td>
</tr>
<tr>
<td>G</td>
<td>3.9</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>H</td>
<td>5.9</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>I</td>
<td>6.5</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>J</td>
<td>7.7</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>K</td>
<td>8.8</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>L</td>
<td>9.5</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>M</td>
<td>10.4</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>N</td>
<td>11.2</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>O</td>
<td>13.2</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>P</td>
<td>14.9</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>Q</td>
<td>16.4</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>R</td>
<td>17.2</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>S</td>
<td>18.4</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>T</td>
<td>19.1</td>
<td>70</td>
<td>00:00:30</td>
</tr>
<tr>
<td>U</td>
<td>19.9</td>
<td>60</td>
<td>00:00:30</td>
</tr>
<tr>
<td>V</td>
<td>20.5</td>
<td>80</td>
<td>00:00:30</td>
</tr>
<tr>
<td>W</td>
<td>21.5</td>
<td>80</td>
<td>00:00:30</td>
</tr>
</tbody>
</table>

Table 4. Metro profile data (OSIRIS, 2014; Roll2Rail, 2016)
3.3 Tram

As in the Metro case, the Tram profile is not included in the current version of the prEN50591 standard but it was proposed as part of OSIRIS (2014) and updated during Roll2Rail (2016). It represents services within urban areas covering partially segregated or non-segregated routes with stops separated by an average of 0.4 km at speeds up to 50 km/h.

![Diagram of Tram standard profile](OSIRIS, 2014; Roll2Rail, 2016)
The data related to this profile is summarised in Table 5.

<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>30</td>
<td>00:00:00</td>
</tr>
<tr>
<td>B</td>
<td>0.4</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>C</td>
<td>0.8</td>
<td>20</td>
<td>00:00:30</td>
</tr>
<tr>
<td>D</td>
<td>1.1</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>E</td>
<td>1.5</td>
<td>50</td>
<td>00:00:30</td>
</tr>
<tr>
<td>F</td>
<td>2.1</td>
<td>20</td>
<td>00:00:30</td>
</tr>
<tr>
<td>G</td>
<td>2.4</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>H</td>
<td>2.9</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>I</td>
<td>3.3</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>J</td>
<td>3.6</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>K</td>
<td>3.8</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>M</td>
<td>4.3</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>N</td>
<td>4.5</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>O</td>
<td>4.6</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>P</td>
<td>4.8</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>Q</td>
<td>5.1</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>R</td>
<td>5.3</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>S</td>
<td>5.6</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>U</td>
<td>6.5</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>V</td>
<td>6.8</td>
<td>50</td>
<td>00:00:30</td>
</tr>
<tr>
<td>W</td>
<td>7.4</td>
<td>50</td>
<td>00:00:30</td>
</tr>
<tr>
<td>X</td>
<td>8.1</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>Y</td>
<td>8.5</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>Z</td>
<td>9</td>
<td>30</td>
<td>00:00:30</td>
</tr>
<tr>
<td>AA</td>
<td>9.4</td>
<td>50</td>
<td>00:00:30</td>
</tr>
<tr>
<td>BB</td>
<td>10</td>
<td>-</td>
<td>00:00:30</td>
</tr>
</tbody>
</table>

Table 5. Tram profile data (OSIRIS, 2014; Roll2Rail, 2016)
4 Regional

The regional service profile consists of two variants, namely: Regional 160 and regional 140. Their characteristics are detailed in the following sub-sections.

4.1 Regional 160

This category was newly created as part of the Roll2Rail project (Roll2Rail, 2016). It represents fast regional services ideally suited for modern EMUs/DMUs characteristics. The speed profile or duty cycle of this sub-category is based on the intercity profile as defined in prEN50591 with a reduced speed of 160km/h and the inclusion of additional stations, specifically stations C, G, I, J, L, N and P on Fig. 4 and Table 6 at an average distance of 15km. The lead spectrum for this type of service is predominantly similar to that of intercity services. Roll2Rail (2016) results show that in the regional 160 case, there is a stronger representation of time share at 160km/h.

![Fig. 4. Regional 160 service profile (CEN/CENELEC, 2014)](image_url)
The service data for Regional 160 is summarised below

<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>40</td>
<td>00:03:00</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>120</td>
<td>00:02:00</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>90</td>
<td>00:01:00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>40</td>
<td>160</td>
<td>00:02:00</td>
</tr>
<tr>
<td>E</td>
<td>60</td>
<td>80</td>
<td>00:02:00</td>
</tr>
<tr>
<td>F</td>
<td>80</td>
<td>120</td>
<td>00:03:00</td>
</tr>
<tr>
<td>G</td>
<td>85</td>
<td>140</td>
<td>00:01:00</td>
</tr>
<tr>
<td>H</td>
<td>110</td>
<td>160</td>
<td>00:02:00</td>
</tr>
<tr>
<td>I</td>
<td>120</td>
<td>140</td>
<td>00:01:00</td>
</tr>
<tr>
<td>J</td>
<td>130</td>
<td>160</td>
<td>00:01:00</td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>140</td>
<td>80</td>
<td>00:03:00</td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>175</td>
<td>160</td>
<td>00:01:00</td>
</tr>
<tr>
<td></td>
<td>195</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>198</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>200</td>
<td>80</td>
<td>00:02:00</td>
</tr>
<tr>
<td></td>
<td>202</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>219</td>
<td>90</td>
<td>00:01:00</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>230</td>
<td>120</td>
<td>00:02:00</td>
</tr>
<tr>
<td>P</td>
<td>245</td>
<td>80</td>
<td>00:01:00</td>
</tr>
<tr>
<td></td>
<td>249</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>250</td>
<td>40</td>
<td>00:03:00</td>
</tr>
</tbody>
</table>

Table 6. Regional 160 profile data (CEN/CENELEC, 2014; Roll2Rail, 2016)
4.2 Regional 140

This is defined according to the regional profile in prEN50591 and in the same way as for the suburban application (CEN/CENELEC, 2014). The service covers 13 stations separated by 5km (average) on mostly non-electrified routes at 80 to 140km/h.

![Graph showing Regional 140 service profile](image)

Fig. 5. Regional 140 service profile (CEN/CENELEC, 2014)

<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>Arrival [hh:mm:ss]</th>
<th>Stop</th>
<th>Departure [hh:mm:ss]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>40</td>
<td>2:00</td>
<td>00:00:00:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>100</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>110</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>110</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>18</td>
<td>125</td>
<td>2:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>21</td>
<td>125</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>26</td>
<td>125</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>35</td>
<td>140</td>
<td>2:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>38</td>
<td>140</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>44</td>
<td>140</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>54</td>
<td>130</td>
<td>2:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>60</td>
<td>130</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>64</td>
<td>110</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>67</td>
<td>80</td>
<td>1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69.5</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>70</td>
<td>01:01:00</td>
<td>2:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 High speed

Similar to the situation described for the regional application (section 4), the high speed service profile consists of two variants per se plus a third associated one, namely: High speed 300, high speed 250 and intercity respectively. Their characteristics are detailed in the following sub-sections.

5.1 High speed 300

This service profile corresponds to the high speed profile defined in the standard, which represents a line with a maximum speed of 300 km/h for more than half of the total length of the route linking to upgraded lines with service speeds of up to 200-220 km/h (CEN/CENELEC, 2014). The profile also includes one single stop representing the very high distance between stops (150 km) typical of this sort of service e.g. Spanish and French high speed networks. The standard considers in addition the usual and frequent transition of high speed services over conventional lines to provide connectivity across the main nodes of the network.

![Fig. 6. High Speed 300 service profile (CEN/CENELEC, 2014)](image-url)
<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>Arrival [hh:mm:ss]</th>
<th>Stop</th>
<th>Departure [hh:mm:ss]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>40</td>
<td>3:00</td>
<td>3:00</td>
<td>00:00:00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>80</td>
<td>00:42:00</td>
<td>3:00</td>
<td>00:45:00</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>285</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>299</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>300</td>
<td></td>
<td>01:47:00</td>
<td>3:00</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. High Speed 300 profile data (CEN/CENELEC, 2014)

5.2 High Speed 250

This profile has been proposed by the Roll2Rail project (Roll2Rail, 2016) to represent the growing traffic in Europe (e.g. Germany, Switzerland, Belgium, Netherlands, Poland) characterised by service speeds of up to 250 km/h. For simplicity purposes, the service profile is based on the high speed 300 with a reduced speed to 250 km/h and the addition of two further intermediate stations at 170km (station C) and 240 km (station D).
Table 8. High speed 250 profile data (Roll2Rail, 2016)

<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>40</td>
<td>3:00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>80</td>
<td>3:00</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>170</td>
<td>250</td>
<td>3:00</td>
</tr>
<tr>
<td>D</td>
<td>240</td>
<td>250</td>
<td>3:00</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>285</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>299</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>300</td>
<td>3:00</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. High speed 250 service profile (Roll2Rail, 2016)
5.3 Intercity

This service profile is included within the high speed grouping but follows the specific definition in the standard, where eight stops are included with different stopping times and at various speeds between stations with an overall maximum of 200km/h (CEN/CENELEC, 2014).

![Intercity service profile (CEN/CENELEC, 2014)](image)

<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Speed limit [km/h]</th>
<th>Arrival [hh:mm:ss]</th>
<th>Stop</th>
<th>Departure [hh:mm:ss]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>40</td>
<td>3:00</td>
<td>00:00:00:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>120</td>
<td>00:11:00</td>
<td>2:00</td>
<td>00:13:00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>160</td>
<td>00:28:00</td>
<td>2:00</td>
<td>00:30:00</td>
</tr>
<tr>
<td>D</td>
<td>60</td>
<td>80</td>
<td>00:40:00</td>
<td>2:00</td>
<td>00:42:00</td>
</tr>
<tr>
<td>E</td>
<td>80</td>
<td>120</td>
<td>00:59:00</td>
<td>3:00</td>
<td>01:02:00</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>110</td>
<td>160</td>
<td>01:18:00</td>
<td>2:00</td>
<td>01:20:00</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>140</td>
<td>80</td>
<td>01:36:00</td>
<td>3:00</td>
<td>01:39:00</td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Freight

The service profile for mainline freight operation is defined in prEC50591 describing it over a 300km line with three planned stops and two additional ones related to traffic management (red signal stops). This profile is the only one to include altitude reflecting the realities of European long distance freight services (CEN/CENELEC, 2014).

![Freight mainline service profile](image)

Fig. 9. Freight mainline service profile (CEN/CENELEC, 2014)
<table>
<thead>
<tr>
<th>Station</th>
<th>Distance [km]</th>
<th>Height (m)</th>
<th>Speed limit [km/h]</th>
<th>Arrival [hh:mm:ss]</th>
<th>Stop</th>
<th>Departure [hh:mm:ss]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>0</td>
<td>40</td>
<td>3:00</td>
<td>00:00:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>0</td>
<td>40</td>
<td>00:24:00</td>
<td>2:00</td>
<td>00:26:00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78.5</td>
<td>0</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>80</td>
<td>0</td>
<td>60</td>
<td>01:12:00</td>
<td>1:00</td>
<td>01:13:00</td>
</tr>
<tr>
<td></td>
<td>81</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.5</td>
<td>0</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>01:29:00</td>
<td>5:00</td>
<td>01:34:00</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>132</td>
<td>90</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>190</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>152</td>
<td>340</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>340</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>190</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>90</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>198</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>200</td>
<td>0</td>
<td>100</td>
<td>02:51:00</td>
<td>5:00</td>
<td>02:56:00</td>
</tr>
<tr>
<td></td>
<td>287</td>
<td>0</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>290</td>
<td>0</td>
<td>80</td>
<td>03:59:00</td>
<td>1:00</td>
<td>04:00:00</td>
</tr>
<tr>
<td></td>
<td>292</td>
<td>0</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>297</td>
<td>0</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>299</td>
<td>0</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>300</td>
<td>0</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Freight mainline profile data (CEN/CENELEC, 2014)
7 Topologies, components and parameters

As part of the joint work between OPEUS and its Shift2Rail members project FINE1, an agreed selection of six topologies has been proposed as follows:

- T01 electric traction chain AC power supply;
- T02 electric traction chain AC power supply E-Transformer;
- T03 electric traction chain DC power supply;
- T04 bi-current traction chain;
- T05 diesel electric traction;
- T06 diesel hydraulic/mechanical traction

Of these, only topologies T01, T02 and T03 will be simulated during the lifetime of OPEUS. Representative diagrams of all six topologies are included in Appendix A.

Similarly, 24 components and 312 parameters associated with these topologies have been proposed to be simulated for practical purposes, as indicated in Table 11. A separate live excel document is being used to collected the corresponding values from the relevant Shift2Rail members.

<table>
<thead>
<tr>
<th>id</th>
<th>component</th>
<th>id</th>
<th>component</th>
</tr>
</thead>
<tbody>
<tr>
<td>C00</td>
<td>Vehicle</td>
<td>C15</td>
<td>Line inductor</td>
</tr>
<tr>
<td>C04</td>
<td>Gearbox</td>
<td>C16</td>
<td>ESS battery</td>
</tr>
<tr>
<td>C05</td>
<td>Induction motor</td>
<td>C17</td>
<td>DLC Converter</td>
</tr>
<tr>
<td>C06</td>
<td>Synchronous motor</td>
<td>C18</td>
<td>ESS-DLC</td>
</tr>
<tr>
<td>C07</td>
<td>Motor converter (basic-semi-conductors)</td>
<td>C19</td>
<td>e-transformer</td>
</tr>
<tr>
<td>C08</td>
<td>Motor converter (SiC)</td>
<td>C22</td>
<td>Auxiliary converter-DC link connected</td>
</tr>
<tr>
<td>C09</td>
<td>Rheostat converter</td>
<td>C23</td>
<td>Electrical auxiliary-DC link</td>
</tr>
<tr>
<td>C10</td>
<td>Rheostat</td>
<td>C24</td>
<td>Auxiliary converter-connected to transformer link</td>
</tr>
<tr>
<td>C11</td>
<td>DC intermediate circuit-absorption</td>
<td>C25</td>
<td>Electrical auxiliary-transformer link</td>
</tr>
<tr>
<td>C12</td>
<td>Line converter</td>
<td>C26</td>
<td>Battery converter</td>
</tr>
<tr>
<td>C13</td>
<td>Transformer</td>
<td>C27</td>
<td>Battery consumption-on board power supply</td>
</tr>
<tr>
<td>C14</td>
<td>ESS battery converter</td>
<td>C28</td>
<td>Infrastructure</td>
</tr>
</tbody>
</table>

Table 11. Selection of components to be simulated as part of OPEUS
8 Conclusions

This deliverable D3.1 summarises the main service profile and related data defining the boundary conditions for the reference scenarios (urban, regional, high speed and freight) to be used in the modelling activities of the project. The contents of this document have been produced by a combination of the information generated by previous projects (e.g. Roll2Rail), the existing draft standard prEN50591 and the joint effort of the OPEUS-FINE1 group.
References

CleanER-D (2011) D7.2.1 Detailed Specification: Parameters definition (Grant agreement No FP7 - 234338).

OSIRIS (2014) D1.8 Definition of Generic Duty Cycles/Operational Modes (Grant agreement No FP7 – 284868).

Roll2Rail (2016) D8.2 Energy calculation methodology, boundary conditions, and link with Shift2Rail targets (Grant Agreement No. H2020 – 636032).

10 Appendix A
Fig. 10. Appendix A_T01 Electric traction chain AC power supply (25kV@50Hz, 15kV@16.7Hz)

Fig. 11. Appendix A_T02 Electric traction chain AC power supply E-transformer (25kV@50Hz, 15kV@16.7Hz)
Fig. 12. Appendix A_T03 Electric traction chain DC power supply (750V, 1.5kV, 3kV)

Fig. 13. Appendix A_T04 bi-current traction chain
Fig. 14. Appendix A_T05 Diesel electric traction

Fig. 15. Appendix A_T06 Diesel hydraulic/Mechanical traction